Mark Scheme (Results)

June 2018

Pearson Edexcel
International Advanced Subsidiary Level
In Further Pure Mathematics F1 (WFM01)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2018
Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Notes	Marks
1.	$\sum_{r=1}^{n} r(r+3)=\sum_{r=1}^{n} r^{2}+3 \sum_{r=1}^{n} r$			
	$=\frac{1}{6} n(n+1)(2 n+1)+3\left(\frac{1}{2} n(n+1)\right)$		Attempts to expand $r(r+3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1
			Correct expression (or equivalent)	A1
	$=\frac{1}{6} n(n+1)[(2 n+1)+9]$		dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both correct standard formulae.	dM1
	$=\frac{1}{6} n(n+1)(2 n+10)$		\{this step does not have to be written\}	
	$=\frac{n}{3}(n+1)(n+5) \text { or } \frac{1}{3} n(n+1)(n+5)$		Correct completion with no errors. Note: $a=3, b=5$	A1
				(4)
				4
	Question 1 Notes			
1.	Note	Applying e.g. $n=1, n=2$ to the printed equation without applying the standard formulae to give $a=3, b=5$ is M0A0M0A0		
	Alt 1 dM1 A1	Alt Method 1 (Award the first two marks using the main scheme) Using $\frac{1}{3} n^{3}+2 n^{2}+\frac{5}{3} n \equiv \frac{1}{a} n^{3}+\left(\frac{b+1}{a}\right) n^{2}+\frac{b}{a} n \quad$ o.e. Equating coefficients to find both $a=\ldots$ and $b=\ldots$ and at least one correct of $a=3$ or $b=5$ Finds $a=3$ and $b=5$		
	Alt 2 dM1 A1	Alt Method 2: (Award the first two marks using the main scheme) $\frac{1}{6} n(n+1)(2 n+1)+\frac{3}{2} n(n+1) \equiv \frac{n}{a}(n+1)(n+b)$ Substitutes $n=1, n=2$, into this identity o.e. and solves to find both $a=\ldots$ and $b=\ldots$ and at least one correct of $a=3, b=5$ Note: $n=1$ gives $4=\frac{2(1+b)}{a}$ or $2 a-b=1$ and $n=2$ gives $14=\frac{6(2+b)}{a}$ or $7 a-3 b=6$ Finds $a=3$ and $b=5$		
	Note	Allow final dM1A1 for $\frac{1}{3} n^{3}+2 n^{2}+\frac{5}{3} n$ or $\frac{1}{3}\left(n^{3}+6 n^{2}+5 n\right) \rightarrow \frac{n}{3}(n+1)(n+5)$ with no incorrect working.		
	Note	A correct proof $\sum_{r=1}^{n} r(r+3)=\frac{n}{3}(n+1)(n+5)$ followed by stating an incorrect e.g. $a=5, b=3$ is M1A1dM1A1 (ignore subsequent working)		
	Note	Give A0 for $\frac{2}{6} n(n+1)(n+5)$ without reference to $a=3$ or $\frac{n}{3}(n+1)(n+5)$ or $\frac{1}{3} n(n+1)(n+5)$		

Question Number	Scheme	Notes		Marks
2.	P represents an anti-clockwise rotation about the origin through 45 degrees			
(a)	$\{\mathbf{P}=\}\left(\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right)$ or $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ or e.g. $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$		Correct matrix which is expressed in exact surds	B1
				(1)
(b)	Enlargement	Enlargement or enlarge		M1
	Centre (0,0) with scale factor $k \sqrt{2}$	About $(0,0)$ or about O or about the origin and scale or factor or times and $k \sqrt{2}$ Note: Allow $\sqrt{2 k^{2}}$ in place of $k \sqrt{2}$		A1
	Note: Give M0A0 for combinations of transformations			(2)
$\begin{gathered} \text { (c) } \\ \text { Way } 1 \end{gathered}$	$\begin{aligned} & \{\mathbf{P Q}=\}\left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right)\left(\begin{array}{cc} k \sqrt{2} & 0 \\ 0 & k \sqrt{2} \end{array}\right)=\left(\begin{array}{cc} k & -k \\ k & k \end{array}\right) \\ & \{\operatorname{det} \mathbf{P Q}=\}(k)(k)-(-k)(k)=2 k^{2} \end{aligned}$		ultiplies their matrix from by \mathbf{Q} [either way round] and applies " $a d-b c$ " to the resulting matrix	M1
			to give $2 k^{2}$ states \mid their $\operatorname{det} \mathbf{P Q} \mid=2 k^{2}$ $\operatorname{done}\{\operatorname{det} \mathbf{P Q}=\} k^{2}+k^{2}$	A1
	$6\left(2 k^{2}\right)=147$ or $2 k^{2}=\frac{147}{6}$	or puts th	$($ their determinant $)=147$ determinant equal to $\frac{147}{6}$	M1
	$\left\{\Rightarrow k^{2}=\frac{49}{4} \Rightarrow\right\} k=\frac{7}{2}$		Obtains $k=3.5$, o.e.	A1
				(4)
(c) Way 2	$\operatorname{det} \mathbf{Q}=(k \sqrt{2})(k \sqrt{2})-(0)(0)$ or det	$\mathbf{Q}=(k \sqrt{2})(k \sqrt{2})$	applies " $a d-b c$ " to \mathbf{Q} or applies $(k \sqrt{2})^{2}$	M1
	$\begin{gathered} \{\operatorname{det} \mathbf{P}=1 \Rightarrow\} \operatorname{det} \mathbf{P Q}=(1)\left(2 k^{2}\right)=2 \\ \text { or } \operatorname{det} \mathbf{Q}=2 k^{2} \end{gathered}$		$\begin{aligned} \text { deduces that } \operatorname{det} \mathbf{P Q} & =2 k^{2} \\ \text { states } \mid \text { their } \operatorname{det} \mathbf{P Q} \mathbf{Q} & =2 k^{2} \\ \operatorname{or} \operatorname{det} \mathbf{Q} & =2 k^{2} \end{aligned}$	A1
	$6\left(2 k^{2}\right)=147$ or $2 k^{2}=\frac{147}{6}$	$\begin{gathered} 6(\text { their } \operatorname{det}(\mathbf{P Q}))=147 \\ \text { or } 6(\text { their } \operatorname{det}(\mathbf{Q}))=147 \end{gathered}$	$\begin{aligned} & \text { or }(\text { their } \operatorname{det}(\mathbf{P Q}))=\frac{147}{6} \\ & (\text { their } \operatorname{det}(\mathbf{P Q}))=\frac{147}{6} \end{aligned}$	M1
	$\left\{\Rightarrow k^{2}=\frac{49}{4} \Rightarrow\right\} k=\frac{7}{2}$		Obtains $k=3.5$, o.e.	A1
				(4)
				7

	Question 2 Notes	
2. (b)	Note	"original point" is not acceptable in place of the word "origin".
	Note	"expand" is not acceptable for M1
	Note	"enlarge x by $k \sqrt{2}$ and no change in $y^{\prime \prime}$ is M0A0
(c)	Note	Obtaining $k= \pm 3.5$ with no evidence of $k=3.5$ \{only\} is A0
	Way 2 Note 1	Give M1A1M0A0 for writing down $147\left(2 k^{2}\right)=6$ or $\frac{1}{2 k^{2}}=\frac{147}{6}$ or $6\left(\frac{1}{2 k^{2}}\right)=147$, o.e. with no other supporting working.
	Way 2 Note 2	Give M0A0M1A0 for writing $\operatorname{det} \mathbf{Q}=\frac{1}{k^{2}-\left(-k^{2}\right)}$ or $\frac{1}{2 k^{2}}$, followed by $6\left(\frac{1}{2 k^{2}}\right)=147$
	Note	Allow M1A1 for an incorrect rotation matrix \mathbf{P}, leading to $\operatorname{det} \mathbf{P Q}=2 k^{2}$
	Note	Allow M1A1M1A1 for an incorrect rotation matrix \mathbf{P}, leading to $\operatorname{det} \mathbf{P Q}=2 k^{2}$ and $k=3.5$, o.e.
	Note	Using the scale factor of enlargement to write down $k \sqrt{2}=\sqrt{\frac{147}{6}} \Rightarrow k=3.5$ is M1A1dM1A1
	Note	Using the scale factor of enlargement to write down $k \sqrt{2}=\sqrt{\frac{6}{147}}$ is M1A1dM0

Question Number	Scheme		Notes	Marks
3.	$C: y^{2}=6 x ; S$ is the focus of $C ; y^{2}=4 a x ; P\left(a t^{2}, 2 a t\right) ; Q$ lies on the directrix of C. $P Q=14$			
(c) Way 5	$\begin{aligned} & \left\{x_{P}=\frac{3}{2} t^{2}, x_{Q}=-\frac{3}{2}, P Q=14 \Rightarrow\right\} \\ & \left(1.5 t^{2}--1.5\right)=14 \Rightarrow 1.5 t^{2}=12.5 \\ & \Rightarrow t^{2}=\frac{25}{3} \Rightarrow t=\frac{5 \sqrt{3}}{3} \\ & \Rightarrow x=1.5\left(\frac{5 \sqrt{3}}{3}\right)^{2}, y=3\left(\frac{5 \sqrt{3}}{3}\right) \end{aligned}$		Uses horizontal distance $P Q=14$ to form and solve the equation " 1.5 " $t^{2}-"-1.5$ " $=14$ to give $t^{2}=\ldots$ or $t=\ldots$, and finds at leasts one of $x=\ldots$ or $y=\ldots$ by using $x=" 1.5 " t^{2}$ or $y=2(" 1.5 ") t$	M1
			dependent on the previous M mark Finds both $x=\ldots$ and $y=$.. by using $x=" 1.5$ " t^{2} and $y=2(" 1.5 ") t$	dM1
	Either $x=12.5, y=5 \sqrt{3}$ or $(12.5,5 \sqrt{3})$		Correct and paired. Accept $(12.5, \sqrt{75})$	A1
				(3)
(c) Way 6	$\begin{gathered} \left\{S(1.5,0), P\left(\frac{y^{2}}{6}, y\right), S P=14 \Rightarrow\right\} \\ \left(\frac{1}{6} y^{2}-\frac{3}{2}\right)^{2}+y^{2}=14^{2} \Rightarrow y=\ldots \\ \left\{y^{4}+18 y^{2}-6975=0\right\} \end{gathered}$		Applies Pythagoras to $\frac{y^{2}}{6}-" 1.5 ", y$ and 14 , and solves to give $y=\ldots$	M1
	$(\sqrt{75})^{2}=6 x \Rightarrow x=\ldots$		dependent on the previous M mark Substitutes their y into $y^{2}=6 x$ and finds $x=\ldots$	dM1
	Either $x=12.5, y=5 \sqrt{3}$ or $(12.5,5 \sqrt{3})$		Correct and paired. Accept $(12.5, \sqrt{75})$	A1
				(3)
	Question 3 Notes			
3. (c)	Note	Writing coordinates the wrong way round E.g. writing $x=12.5, y=5 \sqrt{3}$ followed by $(5 \sqrt{3}, 12.5)$ is final A0		
	Note	Obtaining both $(12.5,5 \sqrt{3})$ and $(12.5,-5 \sqrt{3})$ with no evidence of only $(12.5,5 \sqrt{3})$ is A0		
	Note	Give final A1 for (12.5, awrt 8.66), with either $y=\sqrt{75}$ or $y=5 \sqrt{3}$ seen in their working		
	Note	You can mark part (b) and part (c) together		

Question Number	Scheme	Notes	Marks
4.	$\mathbf{A}=\left(\begin{array}{ll}2 p & 3 q \\ 3 p & 5 q\end{array}\right) ; \mathbf{X A}$; $\mathbf{B}=\left(\begin{array}{cc}p & q \\ 6 p & 11 q \\ 5 p & 8 q\end{array}\right)$	
(a)	$\{\operatorname{det}(\mathbf{A})=\} 2 p(5 q)-(3 p)(3 q) \quad\{=p q\}$	$2 p(5 q)-(3 p)(3 q)$ which can be un-simplifed or simplifed	B1
	$\left\{\mathbf{A}^{-1}=\right\} \underline{1}\left(\begin{array}{cc}5 q & -3 q \\ -3 p & 2 p\end{array}\right)$ or $\left(\begin{array}{cc}\frac{5}{p} & -\frac{3}{p}\end{array}\right.$	$\left(\begin{array}{rr}5 q & -3 q \\ -3 p & 2 p\end{array}\right)$	M1
	(${ }^{\text {a }}\left(\begin{array}{ll}-3 p & 2 p\end{array}\right)\left(\begin{array}{cc}-\frac{3}{q} & \frac{2}{q}\end{array}\right)$	Correct \mathbf{A}^{-1}	A1
			(3)
(b) Way 1	$\begin{aligned} & \left\{\mathbf{X}=\mathbf{B A}^{-1}=\right\} \\ & \left(\begin{array}{rr} p & q \\ 6 p & 11 q \\ 5 p & 8 q \end{array}\right) \frac{1}{p q}\left(\begin{array}{rr} 5 q & -3 q \\ -3 p & 2 p \end{array}\right)=\ldots \end{aligned}$	Attempts $\mathbf{B A}^{-1}$ and finds at least one element (or at least one element calculation) of their matrix \mathbf{X} Note: Allow one slip in copying down \mathbf{B} Note: Allow one slip in copying down \mathbf{A}^{-1}	M1
	$=\frac{1}{}\left(\begin{array}{rr}2 p q & -p q \\ -3 p q & 4 p q\end{array}\right)$	At least 4 correct elements (need not be in a matrix)	A1
	$=\frac{1}{p q}\left(\begin{array}{rrr}-3 p q & 4 p q \\ p q & p q\end{array}\right)$	dependent on the first M mark Finds a 3×2 matrix of 6 elements	dM1
	$=\left(\begin{array}{rr}2 & -1 \\ -3 & 4 \\ 1 & 1\end{array}\right)$	Correct simplified matrix for \mathbf{X}	A1
			(4)
(b) Way 2	$\begin{aligned} & \{\mathbf{X A}=\mathbf{B} \Rightarrow\}\left(\begin{array}{ll} a & b \\ c & d \\ e & f \end{array}\right)\left(\begin{array}{ll} 2 p & 3 q \\ 3 p & 5 q \end{array}\right)=\left(\begin{array}{rr} p & q \\ 6 p & 11 q \\ 5 p & 8 q \end{array}\right) \\ & \quad 2 p a+3 p b=p, \quad 3 q a+5 q b=q \\ & \text { or } 2 p c+3 p d=6 p, 3 q c+5 q d=11 q \\ & \text { or } 2 p e+3 p f=5 p, 3 q e+5 q f=8 q \\ & \text { and finds at least one of } a, b, c, d, e \text { or } f \end{aligned}$	Applies $\mathbf{X A}=\mathbf{B}$ for a 3×2 matrix \mathbf{X} and attempts simultaneous equations in a and b or c and d or e and f to find at least one of a, b, c, d, e or f Note: Allow one slip in copying down \mathbf{A} Note: Allow one slip in copying down B	M1
	$\left\{\begin{array}{lc} 2 a+3 b=1, & 3 a+5 b=1 \\ 2 c+3 d=6, & 3 c+5 d=11 \\ 2 e+3 f=5, & 3 e+5 f=8 \end{array}\right\} \Rightarrow \begin{gathered} a=2, b=-1 \\ c=-3, d=4 \\ e=1, f=1 \end{gathered}$	At least 4 correct elements	A1
		dependent on the first M mark Finds all 6 elements for the 3×2 matrix \mathbf{X}	dM1
	$\Rightarrow \mathbf{X}=\left(\begin{array}{rr}2 & -1 \\ -3 & 4 \\ 1 & 1\end{array}\right)$	Correct simplified matrix for \mathbf{X}	A1
			(4)
			7

	Question 4 Notes	
4. (a)	Note	Condone $\frac{1}{10 p q-9 p q}\left(\begin{array}{rr}5 q & -3 q \\ -3 p & 2 p\end{array}\right)$ or $\frac{1}{2 p(5 q)-(3 p)(3 q)}\left(\begin{array}{rr}5 q & -3 q \\ -3 p & 2 p\end{array}\right)$ for A1
	Note	Condone $\left(\begin{array}{rr}5 q & -3 q \\ -3 p & 2 p\end{array}\right) \frac{1}{p q}$ or $\left(\begin{array}{rr}5 q & -3 q \\ -3 p & 2 p\end{array}\right) \frac{1}{2 p(5 q)-(3 p)(3 q)}$ for A1
	Note	Condone $\left(\begin{array}{rr}\frac{5 q}{p q} & -\frac{3 q}{p q} \\ -\frac{3 p}{p q} & \frac{2 p}{p q}\end{array}\right)$ for A1
(b)	Note	Way 1: Allow SC $1^{\text {st }} \mathrm{A} 1$ for at least 4 correct elements in $\left(\begin{array}{cc}\frac{2 p q}{\operatorname{their~} \operatorname{det} \mathbf{A}} & \frac{-p q}{\text { their } \operatorname{det} \mathbf{A}} \\ \frac{-3 p q}{\text { their } \operatorname{det} \mathbf{A}} & \frac{4 p q}{\text { their } \operatorname{det} \mathbf{A}} \\ \frac{p q}{\text { their } \operatorname{det} \mathbf{A}} & \frac{p q}{\text { their } \operatorname{det} \mathbf{A}}\end{array}\right)$ or for at least 4 of these elements seen in their calculations

		Question 5 Notes Continued
5. (b)	Note Note	Special Case: If their 3-term quadratic factor $z^{2}+" a " z+" b "$ can be factorised then give Special Case $2^{\text {nd }} \mathrm{M} 1$ for correct factorisation leading to $z=\ldots$ Otherwise, give $2^{\text {nd }} \mathrm{M} 0$ for applying a method of factorisation to solve their 3 TQ .
	Note	Reminder: Method Mark for solving a 3TQ, " $a z^{2}+b z+c=0$ " Formula: Attempt to use the correct formula (with values for a, b and c) Completing the square: $\left(z \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $z=\ldots$
5. (b)(c)	Note	You can mark part (b) and part (c) together

Question Number	Scheme	Notes			Marks
6.	Given $\mathrm{f}(x)=\frac{2\left(x^{3}+3\right)}{\sqrt{x}}-9, x>0 ;$ Roots $\alpha, \beta: 0.4<\alpha<0.5$ and $1.2<\beta<1.3$				
(a)	$\begin{gathered} \left\{\mathrm{f}(x)=2 x^{\frac{5}{2}}+6 x^{-\frac{1}{2}}-9 \Rightarrow\right. \\ \mathrm{f}^{\prime}(x)=5 x^{\frac{3}{2}}-3 x^{-\frac{3}{2}} \end{gathered}$	Some evidence of $\pm \lambda x^{n} \rightarrow \pm \mu x^{n-1} ; \lambda, \mu \neq 0$			M1
		$\text { Differentiates to give } \pm A x^{\frac{3}{2}} \pm B x^{-\frac{3}{2}} ; A, B \neq 0$			M1
		Correct differentiation which can be simplified or un-simplified			A1
	$\left\{\alpha \simeq 0.45-\frac{\mathrm{f}(0.45)}{\mathrm{f}^{\prime}(0.45)}\right\} \Rightarrow \alpha \simeq 0.45-\frac{0.2159541693 \ldots}{-8.428734015 \ldots}$		Valid attempt at Newton-Raphson using their values of $f(0.45)$ and $f^{\prime}(0.45)$		M1
	$\{\alpha=0.4756211869 \ldots\} \Rightarrow \alpha=0.476$ (3 dp)		dependent on all 4 previous marks 0.476 on their first iteration (Ignore any subsequent iterations)		A1 cso
	Correct differentiation followed by a correct answer of 0.476 scores full marks in part (a) Correct answer with no working scores no marks in part (a)				(5)
(a) Alt 1	Alternative method 1 for the first 3 marks				
	$\begin{aligned} & \left\{\begin{array}{ll} u=2 x^{3}+6 & v=\sqrt{x} \\ u^{\prime}=6 x^{2} & v^{\prime}=\frac{1}{2} x^{-\frac{1}{2}} \end{array}\right\} \Rightarrow \\ & \mathrm{f}^{\prime}(x)=\frac{6 x^{2}(\sqrt{x})-\frac{1}{2} x^{-\frac{1}{2}}\left(2 x^{3}+6\right)}{x} \end{aligned}$	Some evidence of $\pm \lambda x^{n} \rightarrow \pm \mu x^{n-1} ; \lambda, \mu \neq 0$			M1
		$\begin{aligned} & \text { Differentiates to give } \\ & \pm A x^{2}(\sqrt{x}) \pm B x^{-\frac{1}{2}}\left(2 x^{3}+6\right) \\ & x \end{aligned} A, B \neq 0$			M1
		Correct differentiation which can be simplified or un-simplified			A1
(b)	Either - $\frac{\beta-1.2}{" 0.3678924937 \ldots . . "}=\frac{1.3-\beta}{" 0.1161410527 . . . "}$ - $\frac{\beta-1.2}{1.3-\beta}=\frac{" 0.3678924937 \ldots \text {..." }}{" 0.1161410527 \ldots "}$ - $\frac{\beta-1.2}{{ }^{0} 0.3678924937 \ldots . . .}=\frac{1.3-1.2}{{ }^{0} 0.1161410527 \ldots "+0.3678924937 \ldots \text {..." }}$			t least one of either rrt 0.37, trunc. 0.36, 0.12 , or trunc. 0.11) ark may be implied.	B1
				A correct linear terpolation method. allow this mark if a ne or three negative are used or if either the wrong way up. ark may be implied.	M1
	- $\beta=\left(\frac{(1.3)(" 0.3678924937 . . . ")+(1.2)(" 0.1161410527 . . . ")}{" 0.1161410527 \ldots \text {) }+ \text { "0.3678924937..." }}\right)$ $=\left(\frac{0.4782602418 \ldots+0.1393692632 \ldots}{0.4840335464 \ldots}\right)=\left(\frac{0.617629505 \ldots}{0.484033546 \ldots}\right)$ - $\beta=1.2+\left(\frac{\text { "0.3678924937..." }}{0.1161410527 \ldots "+0.3678924937 \ldots \text {..." }}\right)(0.1)$ - $\beta=1.2+\left(\frac{"-0.3678924937 . . . "}{"-0.1161410527 \ldots "+"-0.3678924937 \ldots . . . "}\right)(0.1)$			dependent on the previous M mark Rearranges to give $\beta=\ldots$	dM1
	$\{\beta=1.276005578 \ldots\} \Rightarrow \beta=1.276$ (3 dp)		1.276(Ignore any subsequent iterations)		A1 cao
			(4)		

	Question 6 Notes Continued	
6. (b)	Note	Condone writing the symbol α in place of β in part (b)
	Note	$\frac{\beta-1.2}{1.3-\beta}=\left\|\frac{-0.3678924937 \ldots \mathrm{~L}}{\text { "0.1161410527..." }}\right\|$ is a valid method for the first M mark
	Note	Give $1^{\text {st }} \mathrm{M} 1$ for either $\frac{-\mathrm{f}(1.2)}{\mathrm{f}(1.3)}=\frac{\beta-1.2}{1.3-\beta}$ or $\frac{\|\mathrm{f}(1.2)\|}{\mathrm{f}(1.3)}=\frac{\beta-1.2}{1.3-\beta}$ or $\frac{\|\mathrm{f}(1.2)\|}{\|\mathrm{f}(1.3)\|}=\frac{\beta-1.2}{1.3-\beta}$
	Note	Give M1M1 for the correct statement $\frac{1.3\|\mathrm{f}(1.2)\|+1.2 \mathrm{f}(1.3)}{\mathrm{f}(1.3)+\|\mathrm{f}(1.2)\|}$
	Note	Give M1M1 for the correct statement $\beta=\frac{1.3+1.2 k}{k+1}$, where $k=\frac{\mathrm{f}(1.3)}{\|\mathrm{f}(1.2)\|}=\frac{0.116141 \ldots}{0.367892 \ldots}=0.31569 \ldots$
	Note	$\frac{\beta-1.2}{1.3-\beta}=\frac{" 0.3678924937 \ldots "}{" 0.1161410527 \ldots . .} \Rightarrow \beta=1.276$ with no intermediate working is B1 M1 dM1 A1
	Note	$\frac{\beta-1.2}{-0.3678924937 \ldots}=\frac{1.3-\beta}{0.1161410527 \ldots} \Rightarrow \beta=1.34613 \ldots=1.346(3 \mathrm{dp}) \text { is B1 M0 dM0 A0 }$
	Note	$\frac{\beta-1.2}{-0.3678924937 . . .}=\frac{1.3-\beta}{-0.1161410527 \ldots} \Rightarrow \beta=1.276(3 \mathrm{dp})$ is B1 M1 dM1 A1

Question 7 Notes Continued

	Question 7 Notes Continued	
7. (a)	Note	Give B0M1M0M0A0 for $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}=\frac{\left(\frac{2+\sqrt{1 I} i}{5}\right)^{2}+\left(\frac{2-\sqrt{1 I} i}{5}\right)^{2}}{\left(\frac{2+\sqrt{1 I} i}{5}\right)^{2}\left(\frac{2-\sqrt{1 I} i}{5}\right)^{2}}=-\frac{14}{9}$
	Note	Give B0M1M0M0A0 for $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}=\frac{\left(\frac{2+\sqrt{1 I} i}{5}+\frac{2-\sqrt{1 I} i}{5}\right)^{2}-2\left(\frac{2+\sqrt{11 i} i}{5}\right)\left(\frac{2-\sqrt{11} i}{5}\right)}{\left(\frac{2+\sqrt{1 i} i}{5}\right)^{2}\left(\frac{2-\sqrt{1 i} i}{5}\right)^{2}}=-\frac{14}{9}$
	Note	Allow B 1 for both $\mathrm{S}=\frac{4}{5}$ and $\mathrm{P}=\frac{3}{5}$ or for $\sum=\frac{4}{5}$ and $\prod=\frac{3}{5}$
	Note	Give final A0 for e.g. -1.55 or -1.5556 without reference to $-\frac{14}{9}$ or $-1 \frac{5}{9}$ or -1.5
	Note	Give $2^{\text {nd }} \mathrm{M} 1$ for applying their $\alpha+\beta=\frac{4}{5}$ on $\begin{aligned} & 5 \alpha^{2}-4 \alpha+3=0,5 \beta^{2}-4 \beta+3=0 \Rightarrow 5\left(\alpha^{2}+\beta^{2}\right)-4(\alpha+\beta)+6=0 \\ & \text { to give } 5\left(\alpha^{2}+\beta^{2}\right)-4\left(\frac{4}{5}\right)+6=0\left\{\Rightarrow \alpha^{2}+\beta^{2}=\frac{-6+\frac{16}{5}}{5}=-\frac{14}{25}\right\} \end{aligned}$
(b)	Note	A correct method leading to $a=3, b=14, c=75$ without writing a final answer of $3 x^{2}+14 x+75=0$ is final M1A0
	Note	Using $\frac{2+\sqrt{11} \mathrm{i}}{5}, \frac{2-\sqrt{11} \mathrm{i}}{5}$ explicitly, to find the sum and product of $\frac{3}{\alpha^{2}}$ and $\frac{3}{\beta^{2}}$ to give $x^{2}+\frac{14}{3} x+25=0 \Rightarrow 3 x^{2}+14 x+75=0$ scores M0M0M1A0 in part (b)
	Note	Using $\frac{2+\sqrt{11} \mathrm{i}}{5}, \frac{2-\sqrt{11} \mathrm{i}}{5}$ to find $\alpha+\beta=\frac{4}{5}, \alpha \beta=\frac{3}{5}, \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=-\frac{14}{9}$ and applying $\left\{\alpha+\beta=\frac{4}{5},\right\} \alpha \beta=\frac{3}{5}, \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=-\frac{14}{9}$ can potentially score full marks in part (b). E.g. - $\operatorname{Sum}=\frac{3}{\alpha^{2}}+\frac{3}{\beta^{2}}=3\left(-\frac{14}{9}\right)=-\frac{14}{3}$ - Product $=\left(\frac{3}{\alpha^{2}}\right)\left(\frac{3}{\beta^{2}}\right)=\frac{9}{\left(\frac{3}{5}\right)^{2}}=25$ - $x^{2}+\frac{14}{3} x+25=0 \Rightarrow 3 x^{2}+14 x+75=0$
	Note	Finding $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=-\frac{14}{9}$ and correctly writing $x^{2}-3\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\right) x+\frac{9}{(\alpha \beta)^{2}}=0$ followed by $x^{2}-\frac{14}{3} x+25=0 \Rightarrow 3 x^{2}-14 x+75=0 \quad$ (incorrect substitution of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=-\frac{14}{9}$) is M0M1M1A0

Question Number	Scheme	Notes	Marks
7.	$5 x^{2}-4 x+3=0$ has roots α, β		
(b) Way 2	$y=\frac{3}{x^{2}} \Rightarrow x=\frac{3}{y^{2}} \Rightarrow 5\left(\frac{3}{y}\right)-4 \sqrt{\frac{3}{y}}+3=0$	Substitutes $x^{2}=\frac{3}{y}$ into $5 x^{2}-4 x+3=0$	M1
	$\frac{15}{y}+3=4 \sqrt{\frac{3}{y}} \Rightarrow\left(\frac{15}{y}+3\right)^{2}=\left(4 \sqrt{\frac{3}{y}}\right)^{2}$	dependent on the previous M mark Correct method for squaring both sides of their equation	dM1
	$\frac{225}{y^{2}}+\frac{45}{y}+\frac{45}{y}+9=16\left(\frac{3}{y}\right)$		
	$\frac{225}{y^{2}}+\frac{42}{y}+9=0$		
	$9 y^{2}+42 y+225=0$	dependent on the previous M mark Obtains an expression of the form $a y^{2}+b y+c, a, b, c \neq 0$ Note: " $=0$ " not required for this mark	dM1
		Any integer multiple of $3 y^{2}+14 y+75=0$, or $3 x^{2}+14 x+75=0$, including the " $=0$ "	A1
			(4)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

