

Mark Scheme (Results)

June 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2018
Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme		Notes	Marks
1.	$\sum_{r=1}^{n} r(r +$	$3) = \sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r$			
	$=\frac{1}{6}n(n+$	$-1)(2n+1) + 3\left(\frac{1}{2}n(n+1)\right)$	Atte	empts to expand $r(r+3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1
				Correct expression (or equivalent)	A1
	$=\frac{1}{6}n(n-1)$	+1)[(2n+1)+9]	Att	dependent on the previous M mark empt to factorise at least $n(n+1)$ having attempted to substitute both correct standard formulae.	dM1
	$=\frac{1}{6}n(n-1)$	+1)(2n+10)		{this step does not have to be written}	
	$=\frac{n}{3}(n+$	1)(n+5) or $\frac{1}{3}n(n+1)(n+1)$	5)	Correct completion with no errors. Note: $a = 3, b = 5$	A1
					(4)
				Question 1 Notes	4
1.	Note	Applying e.g. $n=1$, $n=2$ to give $a=3$, $b=5$ is M0.		e printed equation without applying the standard for	mulae
	Alt 1	Alt Method 1 (Award th	e first	two marks using the main scheme)	
		Using $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n \equiv \frac{1}{3}$	$\frac{1}{a}n^3 +$	$\left(\frac{b+1}{a}\right)n^2 + \frac{b}{a}n$ o.e.	
	dM1 A1	Equating coefficients to fi Finds $a=3$ and $b=5$	nd bot	th $a =$ and $b =$ and at least one correct of $a = 1$	3 or b=5
	Alt 2	Alt Method 2: (Award t	he firs	st two marks using the main scheme)	
		$\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n+1)$	+1) ≡	$\frac{n}{-}(n+1)(n+b)$	
	dM1	_		a sidentity o.e. and solves to find both $a =$ and $b =$	_
	UIVII	and at least one correct of			•••
				or $2a - b = 1$ and $n = 2$ gives $14 = \frac{6(2+b)}{a}$ or $7a$	-3b = 6
	A1	Finds $a = 3$ and $b = 5$			
,	Note	Allow final dM1A1 for $\frac{1}{3}$	Allow final dM1A1 for $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n$ or $\frac{1}{3}(n^3 + 6n^2 + 5n) \rightarrow \frac{n}{3}(n+1)(n+5)$		
		with no incorrect working.			
	Note	A correct proof $\sum_{r=1}^{n} r(r +$	A correct proof $\sum_{r=1}^{n} r(r+3) = \frac{n}{3}(n+1)(n+5)$ followed by stating an incorrect e.g. $a=5, b=3$		
		is M1A1dM1A1 (ignore s	ubseq	uent working)	
	Note	Give A0 for $\frac{2}{6}n(n+1)(n+1)$	-5) wi	thout reference to $a = 3$ or $\frac{n}{3}(n+1)(n+5)$ or $\frac{1}{3}n(n+1)$	+1)(n+5)

Question Number	Scheme		No	otes	Marl	XS.
2.	P represents an anti-clockwise rotation	about the origin the	hrough 45	degrees		
(a)	$\{\mathbf{P} = \} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$	$\left(\frac{1}{\sqrt{2}}\right)$ or e.g. $\frac{1}{\sqrt{2}}$	$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$	Correct matrix which is expressed in exact surds	B1	
(1-)	Eulencoment			Enlangement on anlance	N/1	(1)
(b)	Enlargement Enlargement or enlarge About $(0, 0)$ or about O or about the origin			M1		
	Centre $(0, 0)$ with scale factor $k\sqrt{2}$		and scale	or factor or times and $k\sqrt{2}$	A1	
	N.A., Circ MOAO	£		$1 \log \sqrt{2k^2} \text{ in place of } k\sqrt{2}$		(2)
(c)	Note: Give M0A0	tor combinations		mations Multiplies their matrix from		(2)
Way 1	$\{\mathbf{PQ} = \} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} k\sqrt{2} & 0 \\ 0 & k\sqrt{2} \end{pmatrix}$	$=\begin{pmatrix} k & -k \\ l & l \end{pmatrix}$		a) by Q [either way round] and applies " $ad - bc$ " to the resulting matrix	M1	
	$\left(\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right) \left(0 k\sqrt{2}\right)$ $\left\{\det \mathbf{PQ} = \right\} (k)(k) - (-k)(k) = 2k^2$	(to give $2k^2$ or states their det \mathbf{PQ} = $2k^2$ ondone {det \mathbf{PQ} = } $k^2 + k^2$	A1	
		6(their determinant) = 147				
	$6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$	(or puts thei	r determinant equal to $\frac{147}{6}$	M1	
	$\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} \ k = \frac{7}{2}$			Obtains $k = 3.5$, o.e.	A1	
						(4)
(c) Way 2	$\det \mathbf{Q} = \left(k\sqrt{2}\right)\left(k\sqrt{2}\right) - (0)(0) \text{ or } \det \mathbf{Q}$	$\mathbf{Q} = \left(k\sqrt{2}\right)\left(k\sqrt{2}\right)$		applies " $ad - bc$ " to \mathbf{Q} or applies $\left(k\sqrt{2}\right)^2$	M1	
	$\{\det \mathbf{P} = 1 \implies \} \det \mathbf{PQ} = (1)(2k^2) = 2k^2$ and deduces that $\det \mathbf{PQ} = 2k^2$ or states $ \text{their det } \mathbf{PQ} = 2k^2$ or $\det \mathbf{Q} = 2k^2$			A1		
	$6(2k^2) = 147 \text{ or } 2k^2 = \frac{147}{6}$ $6\left(\text{their det}(\mathbf{PQ})\right) = 147 \text{ or } \left(\text{their det}(\mathbf{PQ})\right) = \frac{147}{6}$ $\mathbf{or } 6\left(\text{their det}(\mathbf{Q})\right) = 147 \text{ or } \left(\text{their det}(\mathbf{PQ})\right) = \frac{147}{6}$			M1		
	$\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} \ k = \frac{7}{2}$ Obtains $k = 3.5$, o.e.			A1		
						(4)
						7

	Question 2 Notes			
2. (b)	Note	"original point" is not acceptable in place of the word "origin".		
	Note	expand" is not acceptable for M1		
	Note	"enlarge x by $k\sqrt{2}$ and no change in y" is M0A0		
(c)	Note	Obtaining $k = \pm 3.5$ with no evidence of $k = 3.5$ {only} is A0		
	Way 2 Note 1	Give M1A1M0A0 for writing down $147(2k^2) = 6$ or $\frac{1}{2k^2} = \frac{147}{6}$ or $6\left(\frac{1}{2k^2}\right) = 147$, o.e.		
		with no other supporting working.		
	Way 2 Note 2	Give M0A0M1A0 for writing det $\mathbf{Q} = \frac{1}{k^2 - (-k^2)}$ or $\frac{1}{2k^2}$, followed by $6\left(\frac{1}{2k^2}\right) = 147$		
	Note	Allow M1A1 for an incorrect rotation matrix P , leading to det $\mathbf{PQ} = 2k^2$		
	Note	Allow M1A1M1A1 for an incorrect rotation matrix P , leading to det $\mathbf{PQ} = 2k^2$ and $k = 3.5$, o.e.		
	Note	Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{147}{6}} \Rightarrow k = 3.5$ is M1A1dM1A1		
	Note	Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{6}{147}}$ is M1A1dM0		

Question Number	Scheme	Notes	Marks
3.	$C: y^2 = 6x$; S is the focus of C; $y^2 = 4ax$;	$P(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$	
(a)	$\{a = 1.5 \Rightarrow\}$ S has coordinates $(1.5, 0)$	$(1.5,0)$ or $\left(\frac{3}{2},0\right)$ or $\left(\frac{6}{4},0\right)$	B1 cao
	Note: You can recover this mark fo	r $S(1.5, 0)$ stated either parts (b) or part (c)	(1)
(b)	$\{PQ \text{ is parallel to the } x\text{-axis} \Rightarrow \}$	SP = 14	B1 cao
	Focus-directrix Property \Rightarrow $SP \{= PQ\} = 14$		
(a)		f without reference to $SP = 14$ is B0	(1)
(c) Way 1	$\left\{ \text{directrix } x = -\frac{3}{2} \& PQ = 14 \Rightarrow \right\} x_P = 14$		M1
	$y_p^2 = 6(12.5) \Rightarrow y_p = \dots$	dependent on the previous M mark Substitutes their x into $y^2 = 6x$ and finds $y =$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1
			(3)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
(c)	$(x-1.5)^2 + (6x) = 14^2$	Applies Pythagoras to $x - "a"$, $\sqrt{6x}$ and 14,	
Way 2	$\Rightarrow x^2 + 3x - 193.75 = 0 \Rightarrow x = \dots$	then forms and solves quadratic equation in x to give $x =$	M1
		As in Way 1	dM1 A1
			(3)
(c) Way 3	$11^2 + y^2 = 14^2 \implies y = \dots$	Applies Pythagoras to 14 –" $2a$ ", y and 14 , and solves to give $y =$	M1
	$\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$	dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1
			(3)
(c) Way 4	$\Rightarrow 2.25t^4 + 4.5t^2 - 193.75 = 0$ $\{ \text{or } 9t^4 + 18t^2 - 775 = 0 \}$	ies Pythagoras to "1.5" t^2 – "1.5", 2("1.5") t and 14, forms and solves a quadratic equation in t^2 to give t^2 = or t =, and finds at leasts one of = or y = by using x = "1.5" t^2 or y = 2("1.5") t	M1
	$\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, y = 3 \left(\frac{5\sqrt{3}}{3}\right)$	dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^2$ and $y = 2("1.5")t$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1
			(3)
			5

Question Number		Scheme		Notes	Mark	S
3.	$C: y^2 = 6$	Sx ; S is the focus of C; y^2	x; S is the focus of C; $y^2 = 4ax$; $P(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$			
(c) Way 5	$(1.5t^2$	$\begin{cases} x_{Q} = -\frac{3}{2}, PQ = 14 \implies \\ -1.5 = 14 \implies 1.5t^{2} = 12.5 \end{cases}$ $\begin{cases} 5 \implies t = \frac{5\sqrt{3}}{2} \end{cases}$	equation	orizontal distance $PQ = 14$ to form and solve the n "1.5" t^2 -"-1.5" = 14 to give t^2 = or t =, and finds at leasts one of . or y = by using x = "1.5" t^2 or y = 2("1.5") t	M1	
	3	$5\left(\frac{5\sqrt{3}}{3}\right)^2, y = 3\left(\frac{5\sqrt{3}}{3}\right)$	dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^2$ and $y = 2("1.5")t$			
	Either x	=12.5, $y = 5\sqrt{3}$ or (12.5, 5)	$5\sqrt{3}$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1	
						(3)
(c) Way 6	$\left\{ S(1.5,0), P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow \right\}$ $\left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \dots$ $\left\{ y^4 + 18y^2 - 6975 = 0 \right\}$			Applies Pythagoras to $\frac{y^2}{6}$ – "1.5", y and 14, and solves to give $y =$	M1	
		$6x \Rightarrow x = \dots$		dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$	dM1	
	Either x	=12.5, $y = 5\sqrt{3}$ or (12.5, 5)	$5\sqrt{3}$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1	
						(3)
		T		uestion 3 Notes		
3. (c)	Note	Writing coordinates the	-			
		E.g. writing $x = 12.5$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0				
	Note	Obtaining both (12.5, $5\sqrt{3}$	(12) and (12)	$(2.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$	is A0	
	Note	Give final A1 for (12.5, awrt 8.66), with either $y = \sqrt{75}$ or $y = 5\sqrt{3}$ seen in their working				
	Note	You can mark part (b) and	You can mark part (b) and part (c) together			

Question Number	Scheme		Notes	Marks
4.	$\mathbf{A} = \begin{pmatrix} 2p & 3\\ 3p & 5 \end{pmatrix}$	$\begin{pmatrix} q \\ q \end{pmatrix}$; XA = I	$\mathbf{B}; \ \mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$	
(a)	$\{\det(\mathbf{A}) = \} 2p(5q) - (3p)(3q) \{ = p \}$	$q\}$	2p(5q) - (3p)(3q) which can be un-simplified or simplified	B1
	$\left\{\mathbf{A}^{-1} = \right\} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \begin{pmatrix} \frac{5}{p} \\ -\frac{3}{q} \end{pmatrix}$	$-\frac{3}{p}$	$\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$	M1
	$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	$\left(\frac{2}{q}\right)$	Correct A ⁻¹	A1
				(3)
(b) Way 1	$\begin{cases} \mathbf{X} = \mathbf{B} \mathbf{A}^{-1} = \\ \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} = \dots \end{cases}$ Attempts $\mathbf{B} \mathbf{A}^{-1}$ and finds at least one element (or at least one element calculation) of their matrix \mathbf{X} Note: Allow one slip in copying down \mathbf{B} Note: Allow one slip in copying down \mathbf{A}^{-1} $= \frac{1}{pq} \begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \\ pq & pq \end{pmatrix}$ At least 4 correct elements (need not be in a matrix) $\frac{\mathbf{dependent on the first M mark}}{\mathbf{dependent on the first M mark}}$ Finds a 3×2 matrix of 6 elements			M1
	$-\frac{1}{2}\begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \end{pmatrix}$		At least 4 correct elements (need not be in a matrix)	A1
	$=\frac{1}{pq}\begin{bmatrix} -3pq & 4pq \\ pq & pq \end{bmatrix}$		dependent on the first M mark Finds a 3×2 matrix of 6 elements	dM1
	$= \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$			A1
				(4)
(b) Way 2	$\left\{\mathbf{XA} = \mathbf{B} \Longrightarrow\right\} \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$ $2pa + 3pb = p, 3qa + 5qb = q$ $\mathbf{or} 2pc + 3pd = 6p, 3qc + 5qd = 11q$ $\mathbf{or} 2pe + 3pf = 5p, 3qe + 5qf = 8q$ $\mathbf{and} \text{finds at least one of } a, b, c, d, e \text{ or } a = 1000$	p oq)	Applies XA = B for a 3×2 matrix X and attempts simultaneous equations in <i>a</i> and <i>b</i> or <i>c</i> and <i>d</i> or <i>e</i> and <i>f</i> to find at least one of <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> or <i>f</i> Note: Allow one slip in copying down A Note: Allow one slip in copying down B	M1
	(2a+3b=1, 3a+5b=1) $a=2$	2, b = -1	At least 4 correct elements	A1
	$\begin{cases} 2a+3b=1, & 3a+5b=1\\ 2c+3d=6, & 3c+5d=11\\ 2e+3f=5, & 3e+5f=8 \end{cases} \Rightarrow \begin{array}{c} a=2, b\\ c=-3, \\ e=1, f=1 \end{cases}$		dependent on the first M mark Finds all 6 elements for the 3×2 matrix X	dM1
	$\Rightarrow \mathbf{X} = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$		Correct simplified matrix for \mathbf{X}	A1
				(4)
				7

		Question 4 Notes			
4. (a)	Note	ondone $\frac{1}{10pq - 9pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$ or $\frac{1}{2p(5q) - (3p)(3q)} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$ for A1			
	Note	Condone $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{pq}$ or $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{2p(5q) - (3p)(3q)}$ for A1			
	Note	Condone $\begin{pmatrix} \frac{5q}{pq} & -\frac{3q}{pq} \\ -\frac{3p}{pq} & \frac{2p}{pq} \end{pmatrix}$ for A1			
(b)	Note	Way 1: Allow SC 1 st A1 for at least 4 correct elements in $\begin{bmatrix} \frac{2pq}{\text{their det } \mathbf{A}} & \frac{-pq}{\text{their det } \mathbf{A}} \\ \frac{-3pq}{\text{their det } \mathbf{A}} & \frac{4pq}{\text{their det } \mathbf{A}} \\ \frac{pq}{\text{their det } \mathbf{A}} & \frac{pq}{\text{their det } \mathbf{A}} \end{bmatrix}$			
		or for at least 4 of these elements seen in their calculations			

Question Number		Scheme		Notes	Marl	ks
5.	$z^4 - 6z^3$	$+34z^2-54z+225$	$S \equiv (z^2 + 9)(z^2 + az +$	-b); a, b are real numbers		
()				At least one of $a = -6$ or $b = 25$	B1	
(a)	a = -6, b	p = 25		Both $a = -6$ and $b = 25$	B1	
						(2)
(b)	$\int z^2 + \Omega =$	z = 3i, -3i		At least one of $3i$, $-3i$, $\sqrt{9}i$ or $-\sqrt{9}i$	M1	
	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	z = 31, -31		Both 3i and −3i	A1	
	$ \begin{cases} z^2 - 6z + 25 = 0 \Rightarrow \\ \bullet z = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(25)}}{2(1)} \text{or} \\ \bullet (z - 3)^2 - 9 + 25 = 0 \Rightarrow z = \dots \end{cases} $			Correct method of applying the quadratic formula or completing the square for solving their $z^2 + az + b = 0$; $a, b \ne 0$	M1	
		+ 4i, 3 – 4i		3 + 4i and $3 - 4i$	A1	
						(4)
(c)	(0,3) (0,3) (0,-3) (3,4) (0,-3)			 Criteria ± 3i or ± (their k)i plotted correctly on the imaginary axis, where k∈ R, k > 0 dependent on the final M mark being awarded in part (b) Their final two roots of the form λ± μi, λ, μ≠ 0, are plotted correctly Satisfies at least one of the criteria 	B1ft	
		(3, -	-4)	Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis	B1ft	(2)
						(2) 8
			Que	estion 5 Notes		-
5. (a)	Note	Give B1B0 for w	vriting down a correc	et $(z^2 - 6z + 25)$, followed by $a = 25$, $b = -6$		
	Note		a and b are not state			
		• give B1B1 fo	or writing down a co	rrect $(z^2 - 6z + 25)$,		
		• give B1B0 fo	or writing down $(z^2 +$	+ their " a " z + their " b "), with exactly one		
		of their a or t	their b correct			_
(b)	Note	No working leading to $z = 3i$, $-3i$ is 1^{st} M1 1^{st} A1				
	Note	$z = \pm \sqrt{9i}$ unless recovered is 1 st M0 1 st A0				
	Note	You can assume $x = z$ for solutions in this question				
	Note	working. • Give 2^{nd} M1 $a = -6, b = 3$	Give 2^{nd} M1 2^{nd} A1 for $z^2 - 6z + 25 = 0 \Rightarrow z = 3 + 4i$, $3 - 4i$ with no intermediate			
		• Otherwise, g	ive 2 nd M0 2 nd A0 fo	or $z = 3 + 4i$, $3 - 4i$ with no intermediate work	ing.	

	Question 5 Notes Continued				
5. (b)	Note	Special Case: If their <i>3-term quadratic</i> factor $z^2 + "a"z + "b"$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$			
	Note	Otherwise, give 2 nd M0 for applying a method of factorisation to solve their 3TQ.			
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "			
		Formula: Attempt to use the correct formula (with values for a , b and c)			
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$			
5. (b)(c)	Note	You can mark part (b) and part (c) together			

Question Number	Scheme		Notes		Marks
6.	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$;	Roots α , β : $0.4 < \alpha$	$\alpha < 0.5$ and	1.2 < β < 1.3	
(a)	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Son	ne evidence	e of $\pm \lambda x^n \to \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	M1
	Differentiates to give $\pm Ax \pm Bx + A, B \neq 0$			M1	
	$f'(x) = 5x^{\frac{3}{2}} - 3x^{-\frac{3}{2}}$ Correct differentiation which can be simplified			A1	
	$\left\{\alpha \simeq 0.45 - \frac{f(0.45)}{f'(0.45)}\right\} \Rightarrow \alpha \simeq 0.45 - \frac{1}{2}$	-8.428734015		empt at Newton-Raphson using values of f (0.45) and f'(0.45)	M1
	$\{\alpha = 0.4756211869\}$ $\Rightarrow \alpha = 0.476$ (3 dp) dependent on all 4 previous marks 0.476 on their first iteration (Ignore any subsequent iterations)				A1 cso
	Correct differentiation followed by a correct answer of 0.476 scores full marks in part (a) Correct answer with <u>no</u> working scores no marks in part (a)				(5)
(a)	Alternative method 1 for the first 3			1 (0)	(*)
Alt 1		Son	ne evidence	e of $\pm \lambda x^n \to \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	M1
	$\begin{cases} u = 2x^3 + 6 & v = \sqrt{x} \\ u' = 6x^2 & v' = \frac{1}{2}x^{-\frac{1}{2}} \end{cases} \Rightarrow$		Differentiates to give $\frac{\pm Ax^2(\sqrt{x}) \pm Bx^{-\frac{1}{2}}(2x^3 + 6)}{x}; A, B \neq 0$		M1
	$f'(x) = \frac{6x^2(\sqrt{x}) - \frac{1}{2}x^{-\frac{1}{2}}(2x^3 + 6)}{x}$ Correct differentiation which can be simplified or un-simplified			A1	
(b)	Either $ \frac{\beta - 1.2}{"0.3678924937"} = \frac{1.3 - 1.3}{"0.116141} $	- β 0527 "		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1
	"0.3678924937" "0.1161410527" • $\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"}$ • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{1.3 - 1.2}{"0.1161410527" + "0.3678924937"}$ This mark may be implied. A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.			M1	
	• $\beta = \left(\frac{(1.3)("0.3678924937") + (1.2)("0.1161410527")}{"0.1161410527" + "0.3678924937"}\right)$ = $\left(\frac{0.4782602418 + 0.1393692632}{0.4840335464}\right) = \left(\frac{0.617629505}{0.4840335464}\right)$ • $\beta = 1.2 + \left(\frac{"0.3678924937"}{"0.1161410527" + "0.3678924937"}\right)$ (0.1) • $\beta = 1.2 + \left(\frac{"-0.3678924937"}{"-0.1161410527" + "-0.3678924937"}\right)$ (0.1)			dM1	
	$\{\beta = 1.276005578\} \Rightarrow \beta = 1.276$	(3 dp)	(Igr	1.276 nore any subsequent iterations)	A1 cao
					(4) 9
	<u> </u>				,

Question Number		Scheme		Notes	Marks	
6. (b) Way 2		$\frac{x}{678924937"} = \frac{0.1 - 1}{"0.11614103}$ $\frac{("0.3678924937")}{0.4840335464} = 0.0760$	527"	At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1	
		0.4840335464 1.2 + 0.0760055778	0055170	Finds <i>x</i> using a correct method of similar triangles and applies "1.5 + their <i>x</i> "	M1 dM1	
	$\{\beta=1.27\}$	76005578 $\Rightarrow \beta = 1.276 (3)$	3 dp)	1.276	A1 cao	
						(4)
(b) Way 3		$\frac{0.1 - x}{678924937"} = \frac{x}{"0.1161410}$ $\frac{("0.1161410527")}{0.4840335464} = 0.023$		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1	
		0.4840335464 1.3 – 0.0239944222)) 	Finds <i>x</i> using a correct method of similar triangles and applies "1.6 – their <i>x</i> "	M1 dM1	
	$\{\beta = 1.27$	76005578 $\Rightarrow \beta = 1.276 $ (3)	3 dp)	1.276	A1 cao	
					(4)	
			Ques	stion 6 Notes		
6. (a)	Note		•	ir estimate of α with no evidence of applying	g the	
		NR formula is final dM0A0				
	M1			least one correct <i>value</i> of either $f(0.45)$ or $f(0.45)$		
		to 1 significant figure in 0.4	$45 - \frac{f(0.45)}{f'(0.45)}$. So just $0.45 - \frac{f(0.45)}{f'(0.45)}$ with an incorrect	answer	
		and no other evidence score	s final dM0A	Λ0.		
	Note			lgebraic differentiation for either		
		• $f'(0.45) = 5(0.45)^{\frac{3}{2}} - 3($	$(0.45)^{-\frac{3}{2}}$			
				$\frac{2((0.45)^3+3)}{2}$ - 9		
		s f'(1.5) and indicate a month	· · · · · · · · · · · · · · · · · · ·	$\frac{\sqrt{0.45}}{\sqrt{0.45}}$ - 9		
		• f'(1.5) applied correctly	$/ \ln \alpha \simeq 0.43$	$5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}$		
(-)	A14 4'	41 100 41 61 42	1	3(0.43) - 3(0.43)		
(a) Alt 2	Aiternati	ive method 2 for the first 3 n	<u>narks</u>	Some evidence of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	0	
	Note: Allow M1 for either					
	$\begin{cases} u = 2x^{3} + 6 & v = x^{-\frac{1}{2}} \\ u' = 6x^{2} & v' = -\frac{1}{2}x^{-\frac{3}{2}} \end{cases} \Rightarrow$			$\pm Ax^2(x^{-\frac{1}{2}})$ or $\pm Bx^{-\frac{3}{2}}(2x^3 + 6x^2)$	3.71	
	$\left \right \left \left \right \left \left \right \left \right \left \right \left \right \left \right \left \right \left \left \right \left \left \right \left \left \right \left \right \left \right \left \right \left \left \right \left \right \left \right \left \left \right \left \right \left \left \right \left \right \left \right \left \left \right \left \right \left \left \right \left \right \left \right \left \right \left \left \left \right \left \left \left \right \left \left \left \right \left \left $	$\left(\begin{array}{c} 1 \\ -\frac{3}{2} \end{array}\right) \Rightarrow$		or $\pm Bx^{-\frac{3}{2}}(x^3+3)$; $A, B \neq 0$	<i>′</i>	
	u = 0x	$v = -\frac{1}{2}x^{-2}$		Differentiates to gi		
		$+Ax^{2}(x^{-\frac{1}{2}}) + Bx^{-\frac{3}{2}}(2x^{3} + 6)$: $A \ B \neq 0 \ M1$				
	f'(x) = 6	$5x^2(x^{-\frac{1}{2}}) - \frac{1}{2}x^{-\frac{3}{2}}(2x^3 + 6)$		Correct differentiation which can	be A 1	
				simplified or un-simplifie	ea	

		Question 6 Notes Continued			
6. (b)	Note	ondone writing the symbol α in place of β in part (b)			
	Note	$\left \frac{\beta - 1.2}{1.3 - \beta} = \left \frac{\text{"- 0.3678924937"}}{\text{"0.1161410527"}} \right \text{ is a valid method for the first M mark}$			
	Note	Give 1 st M1 for either $\frac{-f(1.2)}{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{ f(1.3) } = \frac{\beta - 1.2}{1.3 - \beta}$			
	Note	Give M1M1 for the correct statement $\frac{1.3 f(1.2) + 1.2f(1.3)}{f(1.3) + f(1.2) }$			
	Note	Give M1M1 for the correct statement $\beta = \frac{1.3 + 1.2k}{k + 1}$,			
		where $k = \frac{f(1.3)}{ f(1.2) } = \frac{0.116141}{0.367892} = 0.31569$			
	Note	$\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"} \implies \beta = 1.276 \text{ with no intermediate working is B1 M1 dM1 A1}$			
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{0.1161410527} \implies \beta = 1.34613 = 1.346 (3 dp) \text{ is B1 M0 dM0 A0}$			
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{-0.1161410527} \Rightarrow \beta = 1.276 (3 \text{ dp}) \text{ is B1 M1 dM1 A1}$			

Question Number		Scheme			Notes	Marks		
7.		$5x^2 - 4x + 3 = 0$ has roots α , β						
(a)	$\alpha + \beta = \frac{2}{5}$	Both $\alpha + \beta = \frac{3}{5}$ Both $\alpha + \beta = \frac{3}{5}$, seen or implied			B1			
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$=\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}$			M1			
	$\alpha^2 + \beta^2$	$= (\alpha + \beta)^2 - 2\alpha\beta = \dots$		Use of the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)				
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$=\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}=\frac{\left(\frac{4}{5}\right)^2-2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$	Applies $\alpha^2 \beta^2 - (\alpha \beta)^2$ correctly in the denominator			M1		
		$=\frac{-\left(\frac{14}{25}\right)}{\left(\frac{9}{25}\right)}=-\frac{14}{9}$	dep	4.4	ALL previous marks being awarded $-1\frac{5}{9}$ or -1.5 from correct working	A1 cso		
					2 2	(5)		
(b) Way 1	{Sum =}	$\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) \left\{ = -\frac{14}{3}\right\}$	$\frac{4}{3}$ or -	$-\frac{42}{9}$	Simplifies $\frac{3}{\alpha^2} + \frac{3}{\beta^2}$ to give 3(their answer to (a))	M1		
	{Product	$= \left\{ \frac{3}{\alpha^2} \right) \left(\frac{3}{\beta^2} \right) = \frac{9}{\left(\frac{3}{5} \right)^2} \left\{ = 2 \right\}$	25 }		Applies $\frac{9}{(\text{their }\alpha\beta)^2}$ using their value of $\alpha\beta$	M1		
	$x^2 + \frac{14}{3}x$	Applies $x^2 - (\text{sum})x + \text{product (can be implied)},$ + 25 = 0 where sum and product are numerical values. Note: "=0" is not required for this mark				M1		
	$3x^2 + 14x$	x + 75 = 0		Any integer multiple of $3x^2 + 14x + 75 = 0$, including the "=0"				
						(4)		
				Question 7 N	Notes	<u> </u>		
7. (a)	Note	Writing a correct $\alpha^2 + \beta^2 =$			without attempting to substitute at leas	t one		
		of either their $\alpha + \beta$ or their	<i>αβ</i> ii	nto $(\alpha + \beta)^2$	$^2 - 2\alpha\beta$ is $2^{\rm nd}$ M0			
	Note	Give B0M1M1M1A0 for α	+ β =	$-\frac{4}{5}, \ \alpha\beta = \frac{3}{5}$	$\frac{3}{6}$ leading to $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(-\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$	$=-\frac{14}{9}$		
	Note	Writing down α , $\beta = \frac{2 + \sqrt{1}}{5}$	$\frac{11}{11}$, $\frac{2}{11}$	$\frac{-\sqrt{11}i}{5}$ and	I then stating $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ or a	applying		
		$\alpha + \beta = \frac{2 + \sqrt{11}i}{5} + \frac{2 - \sqrt{11}i}{5} = \frac{4}{5} \text{ and } \alpha\beta = \left(\frac{2 + \sqrt{11}i}{5}\right)\left(\frac{2 - \sqrt{11}i}{5}\right) = \frac{3}{5} \text{ scores B0}$						
	Note	Those candidates who then apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied						
		$\alpha, \beta = \frac{2 + \sqrt{11}i}{5}, \frac{2 - \sqrt{11}i}{5}, \text{ can only score the M marks in part (a)}$ Give B0M0M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{1}{\left(\frac{2 + \sqrt{11}i}{5}\right)^2} + \frac{1}{\left(\frac{2 - \sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$						
	Note							

		Question 7 Notes Continued							
7. (a)	Note	Give B0M1M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{2 + \sqrt{11}i}{5}\right)^2 + \left(\frac{2 - \sqrt{11}i}{5}\right)^2}{\left(\frac{2 + \sqrt{11}i}{5}\right)^2 \left(\frac{2 - \sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$							
	Note	Give B0M1M0M0A0 for							
		$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}i}{5} + \frac{2-\sqrt{11}i}{5}\right)^2 - 2\left(\frac{2+\sqrt{11}i}{5}\right)\left(\frac{2-\sqrt{11}i}{5}\right)}{\left(\frac{2+\sqrt{11}i}{5}\right)^2 \left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$							
	Note	Allow B1 for both $S = \frac{4}{5}$ and $P = \frac{3}{5}$ or for $\sum = \frac{4}{5}$ and $\prod = \frac{3}{5}$							
	Note	Give final A0 for e.g. -1.55 or -1.5556 without reference to $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5							
	Note	Give 2 nd M1 for applying their $\alpha + \beta = \frac{4}{5}$ on							
		$5\alpha^{2} - 4\alpha + 3 = 0, 5\beta^{2} - 4\beta + 3 = 0 \Rightarrow 5(\alpha^{2} + \beta^{2}) - 4(\alpha + \beta) + 6 = 0$							
		to give $5(\alpha^2 + \beta^2) - 4\left(\frac{4}{5}\right) + 6 = 0 \ \left\{ \Rightarrow \alpha^2 + \beta^2 = \frac{-6 + \frac{16}{5}}{5} = -\frac{14}{25} \right\}$							
(b)	Note	A correct method leading to $a = 3$, $b = 14$, $c = 75$ without writing a final answer of							
		$3x^2 + 14x + 75 = 0$ is final M1A0							
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ explicitly, to find the sum and product of $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$ to give							
		$x^2 + \frac{14}{3}x + 25 = 0 \implies 3x^2 + 14x + 75 = 0$ scores M0M0M1A0 in part (b)							
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ to find $\alpha+\beta=\frac{4}{5}$, $\alpha\beta=\frac{3}{5}$, $\frac{1}{\alpha^2}+\frac{1}{\beta^2}=-\frac{14}{9}$ and applying							
		$\left\{\alpha + \beta = \frac{4}{5}, \right\} \alpha\beta = \frac{3}{5}, \frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ can potentially score full marks in part (b). E.g.							
		• Sum = $\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) = -\frac{14}{3}$							
		• Product $=$ $\left(\frac{3}{\alpha^2}\right)\left(\frac{3}{\beta^2}\right) = \frac{9}{\left(\frac{3}{5}\right)^2} = 25$							
		• $x^2 + \frac{14}{3}x + 25 = 0 \Rightarrow 3x^2 + 14x + 75 = 0$							
	Note	Finding $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and correctly writing $x^2 - 3\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right)x + \frac{9}{(\alpha\beta)^2} = 0$ followed by							
		$x^{2} - \frac{14}{3}x + 25 = 0 \implies 3x^{2} - 14x + 75 = 0$ (incorrect substitution of $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = -\frac{14}{9}$)							
		is M0M1M1A0							

Question Number	Scheme	Notes	Marks
7.	$5x^2 - 4x + 3 =$	0 has roots α , β	
(b) Way 2	$y = \frac{3}{x^2} \Rightarrow x = \frac{3}{y^2} \Rightarrow 5\left(\frac{3}{y}\right) - 4\sqrt{\frac{3}{y}} + 3 = 0$	Substitutes $x^2 = \frac{3}{y}$ into $5x^2 - 4x + 3 = 0$	M1
	$\frac{15}{y} + 3 = 4\sqrt{\frac{3}{y}} \implies \left(\frac{15}{y} + 3\right)^2 = \left(4\sqrt{\frac{3}{y}}\right)^2$	dependent on the previous M mark Correct method for squaring both sides of their equation	dM1
	$\frac{225}{y^2} + \frac{45}{y} + \frac{45}{y} + 9 = 16\left(\frac{3}{y}\right)$		
	$\frac{225}{y^2} + \frac{42}{y} + 9 = 0$		
	$9y^2 + 42y + 225 = 0$	dependent on the previous M mark Obtains an expression of the form $ay^2 + by + c$, $a, b, c \ne 0$ Note: " = 0" not required for this mark	dM1
		Any integer multiple of $3y^2 + 14y + 75 = 0$, or $3x^2 + 14x + 75 = 0$, including the "=0"	A1
			(4)

Question Number		Scheme	Notes	Marks		
8.		$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^n = \begin{pmatrix} a^n \\ \frac{a^n - b}{a - b} \end{pmatrix}$	$\begin{pmatrix} b^n \\ b^n \\ b \end{pmatrix}; n \in \mathbb{Z}^+; a \neq b$			
	RF	HS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$, HS = $\begin{pmatrix} a & 0 \\ \frac{a-b}{a-b} & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ the result is true for $n = k$)	Shows or states that either LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ or LHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ or $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^{1}$, RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	DI		
	•	·	$ \begin{pmatrix} a^k & 0 \\ b \end{pmatrix} \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \qquad \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} $ multiplied by $ \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} $ (either way round)	M1		
	$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a(a^k - b^k)}{a - b} + b^k & b^{k+1} \end{pmatrix} \text{ or } \begin{pmatrix} a^{k+1} & 0 \\ a^k + \frac{b(a^k - b^k)}{a - b} & b^{k+1} \end{pmatrix} $ Multiplies out to give a correct un-simplified matrix $ \text{or e.g. } \begin{pmatrix} a^{k+1} & 0 \\ \frac{a(a^k - b^k)}{a - b} + \frac{b^k(a - b)}{(a - b)} & b^{k+1} \end{pmatrix} $					
		$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$	dependent on the previous A mark Achieves this result with no algebraic errors	A1		
	If the re		for $n = k + 1$. As the result has been shown to be result is true for all $n \in \mathbb{Z}^+$	A1 cso (5)		
				5		
		T	Question 8 Notes			
8.	Note	Final A1 is dependent on all previous It is gained by candidates conveying either at the end of their solution of their solution.	ng the ideas of all four underlined points			
	Note		y itself with no reference to LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$			
	Note	Give B0 for just stating $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^1 =$	$= \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$			
	Note	E.g. $\begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^k & 0 \\ 1 & b \end{pmatrix}$	$ \frac{a^{k+1}}{a^{k+1}} = 0 $ $ \frac{a^{k+1} - b^{k+1}}{a - b} = b^{k+1} $ with no intermediate working is Marketing is Marketing is Marketing.	11A0A0A0		
	Note	Writing $ \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^k & 0 \\ 1 & b \end{pmatrix}$	$ \frac{a(a^{k+1})}{a-b} + b^k + b^{k+1} = \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a-b} & b^{k+1} \end{pmatrix} $ is	M1A1A1		

Question Number	Scheme		Notes		Marks
9.	(a) $\frac{z - ki}{z + 3i} = i$ (b)(i) $k = 4$ (ii) $k = 1$				
(a) Way 1	$z - ki = i(z + 3i) \implies z - ki = iz - 3$ $\implies z - iz = -3 + ki \implies z(1 - i) = -3 + ki$		Complete method of m	aking z the subject	M1
	$\Rightarrow z = \frac{-3 + ki}{(1 - i)}$	Correct exp	pression for $z =$	A1	
	$z = \frac{(-3+ki)}{(1-i)} \frac{(1+i)}{(1+i)} \left\{ = \frac{(-3+ki)(1+i)}{2} \right\}$		dependent on the Multiplies numerato by the conjugate of		dM1
	$z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$			the correct answer with no errors seen	A1* cso
					(4)
(a)	z - ki = i(z + 3i)		Multiplies both	sides by $(z + 3i)$,	
Way 2	(x + yi) - ki = i(x + yi + 3i)	í	applies $z = x + yi$, o.e.,	multiplies out and	M1
	$x + (y - k)\mathbf{i} = -y - 3 + x\mathbf{i}$		attempts to equate bot		
	$\{\text{Real} \Rightarrow \} x = -y - 3$	tł	he imaginary part of the		
	$\{\text{Imaginary} \Rightarrow \} y - k = x$		Both correct equations		
		y-k=x which can be simplified or un-simplified dependent on the previous M mark			
	$\begin{cases} x + y = -3 \\ x - y = -k \end{cases} \Rightarrow x = \frac{-k-3}{2}, y = \frac{k-3}{2}$		Obtains two equations both in terms of x and y and solves them simultaneously to give at least one of $x =$ or $y =$		
	$\Rightarrow z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$		Finds $x =$	$\frac{-k-3}{2}$, $y = \frac{k-3}{2}$	A1* cso
		and writes down the given result			
					(4)
(b)(i)	$\{k=4 \Rightarrow\}$ $z=-\frac{(4+3)}{2}+\frac{(4-3)}{2}i$ $\{z=-\frac{7}{2}+\frac{1}{2}\}$	$\left[\begin{array}{c}1\\-i\end{array}\right]$		substituting $z = 4$	
	$ \{k = 4 \implies \} \ z = -\frac{1}{2} + \frac{1}{2} \cdot 1 = -\frac{1}{2} + \frac{1}{2} \cdot 1 $ $ \{ z = \} \sqrt{(-\frac{7}{2})^2 + (\frac{1}{2})^2} $ $ = \sqrt{\frac{50}{4}}, \sqrt{12.5}, \frac{\sqrt{50}}{2}, \frac{5}{2}\sqrt{2} \text{ or } \frac{5}{\sqrt{2}} \text{ or } \sqrt{\frac{25}{2}} $		into the given expression for z and a full attempt at applying Pythagoras to find $ z $ Correct exact answer		M1
					A1
(ii)		Sc	ome evidence of substitu	uting $z = 1$ into the	
	$\{k=1 \Rightarrow\}$ $z=-\frac{(1+3)}{2}+\frac{(1-3)}{2}i \{=-2-i\}$	_	en expression for z and		
	$arg z = -\pi + tan^{-1}\left(\frac{1}{2}\right)$		to find an expression for $\arg z$ in the range		
			$(-3.14, -1.57)$ or $(-180^{\circ}, -90^{\circ})$		
	. ,	or (3.14, 4.71) or (180°, 270°)			
	$\{\arg z = -\pi + 0.463647 \Rightarrow \} \ \arg z = -2.677945 \{ = -2.678 (3 dp) \}$ awrt -2.678			A1	
					(4)
					8

Question Number	Scheme		Notes	Marks		
9.	(a) $\frac{z - ki}{z + 3i} = i$ (b)(i) $k = 4$ (ii) $k = 1$					
(a) Way 3	$\frac{z - ki}{i} = z + 3i \implies \frac{iz + k}{(-1)} = z + 3i$		Complete method of making <i>z</i> the subject	M1		
	$\Rightarrow -iz - k = z + 3i \Rightarrow -k - 3i = z + iz$ $\Rightarrow -k - 3i = z(1 + i)$ $\Rightarrow z = \frac{-k - 3i}{(1 + i)}$		Correct expression for $z =$	A1		
	$z = \frac{(-k-3i)}{(1+i)} \frac{(1-i)}{(1-i)}$		dependent on the previous M mark Multiplies numerator and denominator by the conjugate of the denominator	dM1		
	$z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i^{-*}$		Achieves the correct answer with no errors seen	A1* cso		
		Question 9 Notes				
9. (a)	Note	Condone any of e.g. $z = -\frac{k+3}{2} + \frac{k-3}{2}i$ or $z = -\frac{(3+k)}{2} + \frac{(-3+k)}{2}i$ for the final A mark				
(b)(i)	Note	M1 can be implied by awrt 3.54 or truncated 3.53				
	Note	Give A0 for 3.5355 without reference to $\sqrt{\frac{50}{4}}$, $\sqrt{12.5}$, $\frac{\sqrt{50}}{2}$, $\frac{5}{2}\sqrt{2}$ or $\frac{5}{\sqrt{2}}$ or $\sqrt{\frac{25}{2}}$				
(b)(ii)	Note	Allow M1 (implied) for awrt -2.7, truncated -2.6, awrt -153° or awrt 207° or awrt 3.6				

Question Number	Scheme		Notes	Mark	S	
10.	$H: xy = 144; \ P\left(12p, \frac{12}{p}\right), \ p \neq 0, \ \text{lies on } H.$					
	Normal to <i>H</i> at <i>P</i> crosses	(P				
(a)	$y = \frac{144}{x} = 144x^{-1} \implies \frac{dy}{dx} = -144x^{-2}$	or $-\frac{144}{x^2}$		$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-2} ; k \neq 0$		
	$xy = 144 \implies x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		Use	es product rule to give $\pm x \frac{dy}{dx} \pm y$	M1	
	$x = 12t$, $y = \frac{12}{t}$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -$	thei	$\operatorname{tr} \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}t}};$ Condone $t \equiv p$			
	So at P , $m_T = -\frac{1}{p^2}$		Correct calc	rulus work leading to $m_T = -\frac{1}{p^2}$	A1	
	So, $m_N = p^2$	Applies	$sm_N=\frac{-1}{m_T},$	where m_T is found using calculus	M1	
	• $y - \frac{12}{p} = "p^2"(x - 12p)$ or • $\frac{12}{p} = "p^2"(12p) + c \implies y = "p^2$	" $x + \text{their } c$		orrect straight line method for an of a normal where $m_N (\neq m_T)$ is found by using calculus.	M1	
	Correct algebra leading to $y = p^2 x + \frac{1}{2}$	$\frac{12}{p} - 12p^3 *$		Correct solution only	A1 *	
	Note: m_N must be a function of p for the 2 nd M1 and 3 rd M1 mark					(5)
(b)	$y = 0 \implies x_Q = 12p - \frac{12}{p^3}$			Puts $y = 0$ and finds x or puts $x = 0$ and finds y	M1	
	$x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$		At le	east one of x_Q or y_R correct, o.e.	A1	
	$\left(12p - \frac{12}{p^3}, 0\right)$ and $\left(0, \frac{12}{p} - 12p^3\right)$			Both sets of coordinates correct. {Ignore labelling of coordinates}	A1	
			1			(3)
(c)	Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right)$	$\frac{1}{2}$ ×	$(\pm \text{ their } x_Q)(\pm \text{ their } y_R) = 512$	M1		
(0)		<u> </u>		Correct equation which can be un-simplified or simplified	A1	
	$144p^4 - 1312 + \frac{144}{p^4} = 0$					
	$144 p^{8} - 1312 p^{4} + 144 = 0$ $\{ \Rightarrow 9 p^{8} - 82 p^{4} + 9 = 0 \}$	Note: 144 <i>1</i>	$p^8 + 144 = 13$	Correct 3 term quadratic in p^4 $312p^4$ is acceptable for this mark	A1	
	$\frac{\text{dependent on the previous M marl}}{(9p^4-1)(p^4-9)=0} \Rightarrow p^4 = \dots$ Uses a 3TQ in p^4 (or an implied 3TQ in p^4 to find at least one value of $p^4 = \dots$			dM1		
	Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only Note: Allow $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$			A1	(5)	
						(5) 13

Question Number	Scheme				Notes	Marks	
10. (c)	Area <i>OQI</i>	ta $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$			$\frac{1}{2} \times \left(\pm \text{ their } x_Q\right) \left(\pm \text{ their } y_R\right) = 512$	M1	
		$2 \pmod{p^3} p$	儿		Correct equation which can be un-simplified or simplified	A1	
	$144\left(p - \frac{1}{p^3}\right)\left(p^3 - \frac{1}{p}\right) = 1024 \implies p^4 - 2 + \frac{1}{p^4} = \frac{10}{12}$			$=\frac{1024}{144}$			
		$\int_{0}^{2} = \frac{64}{9} \implies p^{2} - \frac{1}{p^{2}} = \pm$					
				F	Both correct 3 term quadratics in p^2		
	$3p^4 - 8p^2$	$2-3=0$ and $3p^4+8p^2$	-3=0	Note: Bo	oth $p^4 - 1 = \frac{8}{3}p^2$ and $3p^4 + 8p^2 = 3$	A1	
	(2 - 2 + 1)	$(x^2, 2), 0 \rightarrow x^2$		d	is acceptable for this mark ependent on the previous M mark		
		$(p^2-3)=0 \Rightarrow p^2=\dots$			Q in p^2 (or an implied 3TQ in p^2)	dM1	
	$(3p^2-1)$	$(p^2+3)=0 \Rightarrow p^2=\dots$			to find at least one value of $p^2 =$	GIVII	
	$p = \sqrt{3}$ a	$\text{nd } p = -\frac{1}{\sqrt{3}}$		Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only		A1	
						(5)	
		T		estion 10 N			
10. (a)	Note	Allow $y = p^2 x - 12p^3 +$	$-\frac{12}{p}$ {order o	f terms inter	rchanged in $y =$ for final A1		
(b)	Note	For the accuracy marks i	in part (b) all	low equival	ents such as		
		• $x = 12p - \frac{12}{p^3}$ or	• $x = 12p - \frac{12}{p^3}$ or $x = \frac{12p^4 - 12}{p^3}$ or $x = \frac{12(p^2 - 1)(p^2 + 1)}{p^3}$				
		• $y = \frac{12}{p} - 12p^3$ or $y = \frac{12 - 12p^4}{p}$					
(c)	Note	Give 1 st M1, 1 st A1 for					
		• $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left \left(\frac{12}{p} - 12p^3 \right) \right = 512$ {correct use of modulus}					
		• $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(12p^3 - \frac{12}{p} \right) = 512$ {modulus has been applied here}					
		• $-\frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ {modulus has been applied here}					
	Note	Give 1 st M1, 1 st A0 for $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ {modulus has not been applied on y_R }					
	Note	Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by a correct e.g. $p^4 = 9$ with no					
		intermediate working is 2 nd A0, 2 nd M1					
	Note	Writing a correct $144p^4$	$-1312 + \frac{144}{p^4}$	$\frac{4}{1} = 0$ o.e. for	ollowed by $p^4 = 9$ and $p^4 = \frac{1}{9}$ with n	0	
		intermediate working is 2 nd A1 (implied), 2 nd M1					

